

General Certificate of Education June 2010

Mathematics

MPC4

Pure Core 4

Mark Scheme

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

M	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
A	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

Q Solution Marks Total Comments 1(a) $f(\frac{1}{4}) = 8 \times \frac{1}{64} + 6 \times \frac{1}{16} - 14 \times \frac{1}{4} - 1$ M1 Use $x = \frac{1}{4}$ in evaluation $= -4$ A1 2 NMS 2/2; no ISW (b)(i) $g(\frac{1}{4}) = \text{number}(s) + d = 0$ M1 Use factor theorem to find d See some processing $d = 3$ A1 2 NMS 2/2 (ii) $g(x) = (4x - 1)(2x^2 + bx - 3)$ B1F $a = 2$ $c = -3$; F on d ($c = -2$ x^2 $6 = 4b - 2$ or $x = -14 = -b - 12$ M1 Any appropriate method; PI $b = 2$ Total 7 Alternatives: (M1) Complete division with integer	d)
(b)(i) $g(\frac{1}{4}) = \text{number}(s) + d = 0$	d)
(b)(i) $g(\frac{1}{4}) = \text{number}(s) + d = 0$	d)
(ii) $g(x) = (4x-1)(2x^2+bx-3)$ B1F $a = 2$ $c = -3$; F on d $(c = -1)(2x^2+bx-3)$ Any appropriate method; PI $b = 2$ Total 7	d)
x^2 $6=4b-2$ or x $-14=-b-12$ M1 Any appropriate method; PI NMS 2/2 Total 7 Alternatives:	d)
b = 2 Total Alternatives: $A1 3 NMS 2/2$ 7	
Total 7 Alternatives:	
Alternatives:	
$8x^3 - 2x^2 \over 8x^2 - 14x$	er remainder
$8x^{2} - \frac{2x}{-12x - 1} - 12x + \frac{3}{-4}$ (A1) (2) Remainder = -4 stated	
(b)(i) Division as for (a) $\Rightarrow d-3$ last line d = 3	
$\mathbf{2(a)} \frac{\mathrm{d}x}{\mathrm{d}t} = -3 \frac{\mathrm{d}y}{\mathrm{d}t} = 6t^2$ Both derivatives correct; PI	
$\frac{dy}{dx} = -\frac{6t^2}{3}$ M1 Correct use of chain rule	
$= -2t^2$ A1 3 CSO	
(b) $t=1$ $m_{\rm T}=-2$ $m_{\rm N}=\frac{1}{2}$ M1 Substitute $t=1$ $m_{\rm N}=-\frac{1}{m_{\rm T}}$ For gradient; $m_{\rm T}\neq\pm1$	
Attempt at equation of normal using $(x, y) = (-2, 3)$ M1 Condone one error	
Normal has equation $y-3=\frac{1}{2}(x+2)$ A1 4 CSO; ACF	
(c) $t = \frac{1-x}{3}$ or $t = \sqrt[3]{\frac{y-1}{2}}$ M1 Correct expression for t in term $y = 1 + 2\left(\frac{1-x}{3}\right)^3$ A1 2 ACF	$\operatorname{ms} \operatorname{of} x \operatorname{or} y$
$y = 1 + 2\left(\frac{1-x}{3}\right)^3$ A1 2 ACF	
Total 9	l

MPC4 (cont)				
Q	Solution	Marks	Total	Comments
3(a)(i)	7x-3 = A(3x-2) + B(x+1)	M1		
	$x = -1 \qquad \qquad x = \frac{2}{3}$	m1		Substitute two values of x and solve for A and B
	A=2 $B=1$	A1	3	Or solve $7 = 3A + B$ -3 = -2A + B condone one error
(ii)	$\int \frac{7x-3}{(x+1)(3x-2)} \mathrm{d}x =$			
	$p\ln(x+1)+q\ln(3x-2)$	M1		Condone missing brackets
	$= 2\ln(x+1) + \frac{1}{3}\ln(3x-2) (+c)$	A1F	2	F on A and B; constant not required
(b)	$\frac{6x^2 + x + 2}{2x^2 - x + 1} = \frac{6x^2 - 3x + 3 + 4x - 1}{2x^2 - x + 1}$	M1		
	$=3+\frac{4x-1}{2x^2-x+1}$	B1 A1	3	P = 3 $Q = 4 and R = -1$
	$\frac{2x^2 - x + 1}{$ Total	Al	8	\mathcal{Q} - \mathcal{A} and \mathcal{K} - \mathcal{A}
	Alternatives:		<u> </u>	
() (0)				
(a)(i)	By cover up rule $-7-3$			
	$x = -1$ $A = \frac{-7 - 3}{-5}$			
	$x = \frac{2}{3} \qquad B = \frac{\frac{14}{3} - 3}{\frac{5}{3}}$	(M1)		$x = -1 \text{ and } x = \frac{2}{3}$
	3	(M1)		and attempt to find A and B
	A=2 $B=1$	(A1,A1)	(3)	SC NMS A and B both correct 3/3 One of A or B correct 1/3
(b)	$(2x^2-x+1)6x^2+x+2$	(M1)		Complete division, with $ax + b$ remainder
	$2x^{2}-x+1$) $6x^{2}+x+2$ $6x^{2}-3x+3$	(B1)		P = 3 stated
	4x-1	(A1)	(3)	Q = 4 and $R = -1$ stated or written as expression
	or $6x^2 + x + 2 = P(2x^2 - x + 1) + Qx + R$			
	$=2Px^2+(Q-P)x+P+R$	(M1)		Multiply across and equate coefficients or use numerical values of <i>x</i>
	P = 3 $Q - P = 1$	(B1)		P = 3 stated
	Q-I-1 $P+R=2$			
	Q=4 and $R=-1$	(A1)	(3)	Q = 4 and $R = -1$ stated or written as expression

MPC4 (cont				
Q	Solution	Marks	Total	Comments
4(a)(i)	$\left(1+x\right)^{\frac{3}{2}} = 1 + \frac{3}{2}x + kx^2$	M1		
	$=1+\frac{3}{2}x+\frac{3}{8}x^2$	A1	2	
(ii)	$\left(16+9x\right)^{\frac{3}{2}} = 16^{\frac{3}{2}} \left(1+\frac{9}{16}x\right)^{\frac{3}{2}}$	В1		
	$= k \left(1 + \frac{3}{2} \times \frac{9}{16} x + \frac{3}{8} \left(\frac{9}{16} x \right)^2 \right)$	M1		x replaced by $\frac{9}{16}x$ or start binomial again
				Condone missing brackets
	$= 64 + 54x + \frac{243}{32}x^2$	A 1	3	Accept $7.59375x^2$
	1			1
(b)	$x = -\frac{1}{3}$	M1		Use $x = -\frac{1}{3}$
	$x = -\frac{1}{3}$ $13^{\frac{3}{2}} \approx 46 + \frac{27}{32}$	A1	2	46 seen with $a = 27$ $b = 32$, or $\left(\frac{k \times 27}{k \times 32}\right)$
	Total		7	(K × 32)
	Alternative:		•	
(a)(ii)	$(16+9x)^{\frac{3}{2}} = 16^{\frac{3}{2}} + \frac{3}{2} \times 16^{\frac{1}{2}} \times 9x + \frac{3}{2} \times \frac{1}{2} \times \frac{1}{2} \times 16^{-\frac{1}{2}} \times (9x)^{2}$			
	$\begin{bmatrix} \frac{3}{162} & 3 & \frac{1}{162} & 9x & \frac{1}{3} & \frac{1}{1} & \frac{1}{162} & \frac{-1}{2} & (9x)^2 \end{bmatrix}$	(M1)		Use $(a+bx)^n$ from FB. Allow one error.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(M1)		Condone missing brackets.
	$= 64 + 54x + \frac{243}{32}x^2$	(A2)	(3)	Accept $7.59375x^2$
5(a)(i)	$\cos 2x = 1 - 2\sin^2 x$	B1		ACF in terms of sin (PI later)
	$3(1-2\sin^2 x) + 2\sin x + 1 = 0$	M1		Substitute candidate's $\cos 2x$ in terms of
	$-6\sin^2 x + 2\sin x + 4 = 0$			$\sin x$ (at least 2 terms)
	$3\sin^2 x - \sin x - 2 = 0$	A1	3	AG
				Factorise correctly or use formula
(ii)	$(3\sin x + 2)(\sin x - 1) = 0$	M1		correctly
	$\sin x = -\frac{2}{3} \qquad \sin x = 1$	A1	2	Both; condone $-0.67 \text{or} -0.66$ or better
(b)(i)	$R = \sqrt{13}$	B1		Accept 3.6 or better
(b)(i)				
	$\tan \alpha = \frac{2}{3} \qquad \alpha = 33.7$	M1A1	3	OE; accept $\alpha = 33.69(0)$
(ii)	$2x - \alpha = \cos^{-1}\left(\frac{-1}{R}\right)$	M1		Candidate's R. Or $\cos(2x-\alpha) = \frac{-1}{R}$
	(R) $2x-\alpha=106.1^{\circ}, 253.9^{\circ}$			R
	$x = 69.9^{\circ}, 143.8^{\circ}$	A1		One correct answer
	λ – 07.7 , 1π3.0	A1	3	Both correct, no extras in range
	Total		11	
	· · · · · · · · · · · · · · · · · · ·			

Q	Solution	Marks	Total	Comments
6(a)	$x^{3} + \cos \pi = 7 \Rightarrow x^{3} - 1 = 7$ $x = 2$	M1		Or $x = \sqrt[3]{7 - \cos \pi}$
	x = 2	A1	2	CSO
(b)	$\frac{\mathrm{d}}{\mathrm{d}x}(x^3y) = 3x^2y + x^3\frac{\mathrm{d}y}{\mathrm{d}x}$	M1		2 terms added, one with $\frac{dy}{dx}$
		A 1		
	$\frac{\mathrm{d}}{\mathrm{d}x}(\cos\pi y) = -\pi\sin(\pi y)\frac{\mathrm{d}y}{\mathrm{d}x}$	B1		
	At (2,1) $3 \times 4 + 8 \frac{dy}{dx} - \pi \sin \pi \frac{dy}{dx} = 0$	M1		Substitute candidate's x from (a) and $y = 1$ with 0 on RHS and both derivatives attempted and no extra derivatives
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2}$	A1	5	CSO; OE
	Total		7	

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
	$\overrightarrow{OB} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ $\overrightarrow{AB} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} - \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \\ 0 \end{bmatrix}$	B1 M1 A1	3	PI Use $\pm \left(\overrightarrow{OB} - \overrightarrow{OA} \right)$
(b)(i)	$4+2\lambda = -1 + \mu$ $-3 = 3-2\mu$ $2+\lambda = 4-\mu$ $-6 = -2\mu \qquad \mu = 3$ $\lambda = 4-3-2 \qquad \lambda = -1$ $4+2\lambda = 4-2=2$	M1		$\begin{bmatrix} 4+2\lambda \\ -3 \\ 2+\lambda \end{bmatrix} = \begin{bmatrix} 1+\mu \\ 3-2\mu \\ 4-\mu \end{bmatrix}$ or set up 3 equations Solve for λ and μ
	$\lambda = 4-3-2$ $\lambda = -1$ $4+2\lambda = 4-2=2$ $-1+\mu = -1+3=2$ P is $(2,-3,1)$	A1 A1 B1	4	Both correct Independent check with conclusion: minimum "intersect"
(c)	$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ $= \overrightarrow{OA} + \overrightarrow{PB}$			Or $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$ = $\overrightarrow{OB} + \overrightarrow{PA}$
	$\overrightarrow{OC} = \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix} + \begin{bmatrix} 1-2 \\ -1-3 \\ 2-1 \end{bmatrix}$ $C \text{ is } (3,-1,3)$	M1		$\overrightarrow{OA} + \overrightarrow{PB}$ in components
	or $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$ $= \overrightarrow{OB} + \overrightarrow{AP}$ $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2-4 \end{bmatrix}$			
	$\overrightarrow{OC} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2-4 \\ -3-3 \\ 1-2 \end{bmatrix}$ $C \text{ is } (-1,-1,1)$	M1 A1	4	$\overrightarrow{OB} + \overrightarrow{AP}$ in components
	Total		12	
	Total		14	

Q Q	Solution	Marks	Total	Comments
	Alternative:			
7(c)	$\overrightarrow{AP} = \overrightarrow{BC}$			
	$\left \overrightarrow{AP} \right = \left \overrightarrow{BC} \right = \sqrt{(2-4)^2 + (-3-3)^2 + (1-2)^2}$			
	$=\sqrt{5}$	(M1)		
	$\overrightarrow{BC} = k \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \qquad \overrightarrow{BC} = \sqrt{k}\sqrt{5}$ so $k = \pm 1$			
	so $k = \pm 1$	(A1*)		For $k = 1$ and $k = -1$
	$\overrightarrow{OC} = \overrightarrow{OB} + k \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$			
	$= \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} + \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix} - \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$	(M1)		Either
	$= \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix} \text{ or } \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$	(A1)	(4)	Both
	*If $k = 1$ or $k = -1$ (ie only one k), one correct point gets $2/4$			

MPC4 (cont	Solution	Marks	Total	Comments
	Solution	MAINS	Total	
8(a)	$\int \frac{\mathrm{d}x}{\sqrt{x+1}} = \int -\frac{1}{5} \mathrm{d}t$	B1		Correct separation; or $\frac{dt}{dx} = -5(x+1)^{-\frac{1}{2}}$
	$2\sqrt{x+1} = -\frac{1}{5}t (+C)$			Condone missing integral signs
		B1B1		Correct integrals; condone $\frac{\sqrt{x+1}}{\frac{1}{2}}$
	$x = 80$ $t = 0$ $C = 2\sqrt{81}$	M1		Use $(0, 80)$ to find a constant C
	=18	A1F		F on integrals if in form $\sqrt{x+1} = qt + c$
	$x = \left(9 - \frac{1}{10}t\right)^2 - 1$	A1	6	OE; CSO; $x = $ correct expression in t
(b)	$t = 60 \qquad x = f(60)$	M1		Evaluate $f(60)$, ie $x = (C \text{ not required})$
	= 8	A1	2	CSO
(c)(i)	$\frac{\mathrm{d}A}{\mathrm{d}t} = kA(9 - A)$	M1		$\frac{dA}{dt} = \text{product involving } A; k \text{ required}$ Condone terms in t
		A1	2	
(ii)	$4.5 = \frac{9}{1 + 4e^{-0.09t}}$ $e^{-0.09t} = \frac{1}{4}$	M1		Condone one slip in denominator
		A1		
	$-0.09t = \ln\left(\frac{1}{4}\right)$	m1		Take In correctly
	$t = \frac{\ln\left(\frac{1}{4}\right)}{-0.09}$			
	0.09	A 1	4	CAO; condone more than 3sf if correct
	=15.4 (hours)	A1	4	15.40327068 Allow 15h 24m
	Total		14	
	TOTAL		75	